591 research outputs found

    Controls and guidance research

    Get PDF
    The objectives of the control group are concentrated on research and education. The control problem of the hypersonic space vehicle represents an important and challenging issue in aerospace engineering. The work described in this report is part of our effort in developing advanced control strategies for such a system. In order to achieve the objectives stated in the NASA-CORE proposal, the tasks were divided among the group based upon their educational expertise. Within the educational component we are offering a Linear Systems and Control course for students in electrical and mechanical engineering. Also, we are proposing a new course in Digital Control Systems with a corresponding laboratory

    Dicarbon­yl(pyrazine-1,3-dithiol­ato-κ2 S,S′)bis­(trimethyl­phosphane-κP)iron(II)

    Get PDF
    The title compound, [Fe(C4H2N2S2)(C3H9P)2(CO)2], was obtained as a mononuclear by-product during the treatment of [Fe2(μ-S2C4N2H2)(CO)6] in excess trimethyl­phosphane. The Fe atom is six-coordinated by two thiol­ate S atoms, two phosphane P atoms and two carbonyl C atoms in a distorted octa­hedral geometry. The average Fe—C(O) distance (1.771 Å) is relatively shorter than that of its parent hexa­carbonyl­diiron compound, and differs by 0.511 Å from the average Fe—P(Me)3 distance. The five-membered FeC2S2 chelate ring plane is close to being perpendicular to the P/Fe/P plane [86.5 (2)°]

    Penta­carbonyl-1κ2 C,2κ3 C-(μ-pyrazine-2,3-dithiol­ato-1:2κ4 S,S′:S,S′)(trimethyl­phosphane-1κP)diiron(I)(Fe—Fe)

    Get PDF
    In the title compound, [Fe2(C4H2N2S2)(C3H9P)(CO)5], the Fe2S2 core adopts a butterfly conformation. The PMe3 ligand is coordinated in the basal position, roughly cis to the Fe—Fe bond. The Fe—Fe distance of 2.4970 (6) Å is relatively short compared to those (ca 2.53 Å) found in another monosubstituted diiron compound. A rigid planar dithiol­ate bridge is featured, with an angle of 2.78 (1)° between the Fe—Fe bond and the normal to the pyrazine-2,3-dithiol­ate plane

    Microembossing: A Convenient Process for Fabricating Microchannels on Nanocellulose Paper-Based Microfluidics.

    Get PDF
    Nanopaper, derived from nanofibrillated cellulose, has generated considerable interest as a promising material for microfluidic applications. Its appeal lies in a range of excellent qualities, including an exceptionally smooth surface, outstanding optical transparency, a uniform nanofiber matrix with nanoscale porosity, and customizable chemical properties. Despite the rapid growth of nanopaper-based microfluidics, the current techniques used to create microchannels on nanopaper, such as 3D printing, spray coating, or manual cutting and assembly, which are crucial for practical applications, still possess certain limitations, notably susceptibility to contamination. Furthermore, these methods are restricted to the production of millimeter-sized channels. This study introduces a straightforward process that utilizes convenient plastic micro-molds for simple microembossing operations to fabricate microchannels on nanopaper, achieving a minimum width of 200 µm. The developed microchannel outperforms existing approaches, achieving a fourfold improvement, and can be fabricated within 45 min. Furthermore, fabrication parameters have been optimized, and a convenient quick-reference table is provided for application developers. The proof-of-concept for a laminar mixer, droplet generator, and functional nanopaper-based analytical devices (NanoPADs) designed for Rhodamine B sensing using surface-enhanced Raman spectroscopy was demonstrated. Notably, the NanoPADs exhibited exceptional performance with improved limits of detection. These outstanding results can be attributed to the superior optical properties of nanopaper and the recently developed accurate microembossing method, enabling the integration and fine-tuning of the NanoPADs

    Deep Learning for Microfluidic-Assisted <i>Caenorhabditis elegans</i> Multi-Parameter Identification Using YOLOv7

    Get PDF
    The Caenorhabditis elegans (C. elegans) is an ideal model organism for studying human diseases and genetics due to its transparency and suitability for optical imaging. However, manually sorting a large population of C. elegans for experiments is tedious and inefficient. The microfluidic-assisted C. elegans sorting chip is considered a promising platform to address this issue due to its automation and ease of operation. Nevertheless, automated C. elegans sorting with multiple parameters requires efficient identification technology due to the different research demands for worm phenotypes. To improve the efficiency and accuracy of multi-parameter sorting, we developed a deep learning model using You Only Look Once (YOLO)v7 to detect and recognize C. elegans automatically. We used a dataset of 3931 annotated worms in microfluidic chips from various studies. Our model showed higher precision in automated C. elegans identification than YOLOv5 and Faster R-CNN, achieving a mean average precision (mAP) at a 0.5 intersection over a union ([email protected]) threshold of 99.56%. Additionally, our model demonstrated good generalization ability, achieving an [email protected] of 94.21% on an external validation set. Our model can efficiently and accurately identify and calculate multiple phenotypes of worms, including size, movement speed, and fluorescence. The multi-parameter identification model can improve sorting efficiency and potentially promote the development of automated and integrated microfluidic platforms

    Design and Research of Electron Cyclotron Resonance Heating and Current Dive System on HL-2M Tokamak

    Full text link
    A research has been conducted to develop an 8MW electron cyclotron resonance heating and current drive (ECRH/ECCD) system on HL-2M tokamak. The ECRH system compromise eight 1MW gyrotrons, eight evacuated transmission lines and three launchers. The main purpose of the ECRH system was to suppress the neo-classical tearing modes and control the plasma profile. This paper presents an overview of the design and studies performed in this framework. Some primary test results of the critical components have been released in this paper, e.g. polarizers, power monitor and fast steering launchers

    In situ detection and mass spectrometry imaging of protein-related metabolites in Bombyx batryticatus before and after frying with wheat bran

    Get PDF
    Bombyx batryticatus is derived from the dried larva of Bombyx mori Linnaeus infected by Beauveria bassiana (Bals.) Vuillant. Raw Bombyx batryticatus should be stir-fried before oral administration due to its irritation to the gastrointestinal tract. Nevertheless, it is still an arduous task to uncover the intrinsic mechanism of Bombyx batryticatus processing. In this study, we collected two types of Bombyx batryticatus, one being stir-fried and the other serving as a control. Then, an informative approach, which integrated matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) with chemometrics analysis, was established to screen processing-associated markers and reveal in situ spatial distribution patterns of protein-related metabolites. After optimization of experimental conditions, 21 ions were initially detected from Bombyx batryticatus, including amino acids and peptides. In addition, 15 differential markers were screened by orthogonal projection to potential structure discriminant analysis (OPLS-DA), which were localized and visualized in the transverse section of Bombyx batryticatus by MSI. Eventually, it can be demonstrated that the stir-frying process reduces toxicity while potentially boosting specific biological activities of Bombyx batryticatus. In summary, the established strategy could not only clarify the chemical transformation of protein-related metabolites from Bombyx batryticatus before and after frying with wheat bran, but also reveal the significance of Chinese medicine processing technology
    corecore